EE63

ry and Marks)

ng the

12/C: ■ 6cm

Harks)

delta

lower larks) r and

birks) Blots.

mber . The

ring prks) **d** for

tor

1 ; for

terks) rific

tific rks) HOT,

MIOT

tber

the Es)

(ts)

ple ific lar

on ks)

USN

06EE64

Sixth Semester B.E. Degree Examination, June-July 2009 Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Determine DFT of the sequence x (n) = {1, 1, 2, 2, 3, 3}. Draw magnitude and phase plots. 1
 - b. A discrete time LTI system has impulse response h (n) = 2δ (n) δ (n 1). Determine the output of the system if the input is $x(n) = \{\delta(n) + 3\delta(n-1) + 2\delta(n-2) - \delta(n-3) + \delta(n-4)\}$ using circular convolution.
 - c. g(n) and h (n) are the two sequences of length 6, with 6pt DFT's G (k) Δ H (k) respectively. The sequence g (n) = {4, 3, 1, 5, 2, 6}. The DFT's are related by circular frequency shift as $H(k) = G((k-3))_6$. Determine h(n) without computing DFT and IDFT.
- a. The six samples of the 11 point DFT x (k) of a real sequence x (n) of length 11 are: x(0) = 12, x(2) = -3.2 - J2, x(3) = 5.3 - J4.1, x(5) = 6.5 + j9 x(7) = -4.1 + j0.2 and x(10) = -3.1 + j5.2. Determine the remaining 5 DFT samples. (06 Marks)
 - b. Using overlap add method, determine output y(n) of a filter whose impulse response in $h(n) = \{1, 1, 1\}$ and input $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$. Use 6 point circular (14 Marks) convolution.
- Given x(n) = {1, 2, 3, 4, 4, 3, 2, 1}. Find x(k) using DIF FFT algorithm. Draw signal flow (12 Marks)
 - Develop DIT FFT algorithm for composite value of N = 6. Draw the corresponding signal (08 Marks) flow graph.
- Draw the direct form I and II realizations of a system with transfer function.

$$H(z) = \frac{0.28z^2 + 0.319z + 0.04}{0.5z^3 + 0.3z^2 + 0.17z - 0.2}.$$
 (06 Marks)

Obtain the cascade and parallel realizations for the system function given by

$$H(z) = \frac{1 + \frac{1}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}.$$
 (14 Marks)

PART - B

- a. Design a Butterworth analog high pass filter with the specifications: Pass band gain of kp = -2dB at pass band edge frequency $\Omega p = 200$ rad/sec and stop band gain of Ks = -20dB(10 Marks) at stop band edge frequency $\Omega s = 100 \text{ rad/sec.}$
 - b. Design a chebyshev analog low pass filter that has a -3dB out off frequency of 100 rad/sec and a stop band attenuation of 25dB or greater for all radian frequencies past 250 rad/sec.

(10 Marks)

- a. Explain Impulse Invariant Transformation method of transforming an analog filter to digital filter.
 - b. A digital lowpass filter is required to meet the following specifications:

$$20 \log |H(w)|_{w=0.2\pi} \ge -1.9328 \text{ dB}$$

20 log
$$|H(w)|_{w=0.6\pi} \le -13.9794 \text{ dB}$$
.

(08 Marks)

The filter must have a maximally flat frequency response. Find H(z) to meet the above specifications using impulse invariant transformation. (12 Marks)

- 7 a. Design a Low pass FIR filter with desired frequency response $\text{Hd}(w) = \begin{cases} 1e^{-j2w} & |00| \leq \pi/4 \\ 0 & \frac{\pi}{4} & \leq |w| \leq \pi \end{cases}. \text{ Use rectangular window with N = 5.}$ (10 Marks)
 - The frequency response of an FIR filter is given by
 H(w) = e^{-j3w} (1 + 1.8 cos3w + 1.2 cos2w + 0.5 cosw). Determine the coefficients of the impulse response h(n) of the FIR filter.
- 8 a. The desired frequency response of a low pass filter is $Hd(w) = \begin{cases} e^{-j3w} & 0 \le w \le \pi/2 \\ 0 & \pi/2 \le w < \pi \end{cases}$. Design the filter for N = 7, using frequency sampling technique.

 b. Draw the architecture of TMS 320C5x family of DSP processors and explain. (08 Marks)

* * * * *